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Abstract

Phase change heat transfer with incoming supercooled droplets on heated curved surfaces is examined. The processes of rime ice,

transition and combined rime/glaze ice conditions are modelled. In the analysis, heat conduction equations in the ice and unfrozen

water layers are solved simultaneously with the mass balance, including incoming droplets. Energy input from the heated boundary

(due to electrical heat generation) affects the growth of the glaze film thickness and associated liquid runback along the ice surface.

Validation of the predictive model is carried out through comparisons with experimental data [Lu et al., A semi-empirical icing

model for an energized power line, Internal Report, Department of Mechanical and Industrial Engineering, University of Manitoba,

Winnipeg, Canada, 1999; Mass of ice accretion from freezing rain simulations, Proceedings, 8th IWAIS, Reykjavik, Iceland, 1998]

involving ice buildup on heated, non-rotating circular conductors. Close agreement is achieved between the predicted ice growth and

the measured data. Additional effects of cable radius, Joule heating rate and surface curvature are presented. The heat transfer

model is shown to correctly approach the dry growth limit, based on mass conservation alone, under appropriate thermal conditions

when the surface heating rate is diminished sufficiently. As a result, a single formulation is provided over the entire range of rime,

transition and combined rime/glaze ice conditions, including the simultaneous growth of unfrozen water and ice layers.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Phase change heat transfer with glaze ice is encoun-

tered in various engineering technologies. Glaze ice oc-

curs under certain thermodynamic conditions near the

equilibrium phase change temperature (i.e. 0 �C for

water). Upon their release of latent heat by freezing,

impinging droplets on an ice surface may heat the sur-

face sufficiently to generate an unfrozen water layer with

runback along the ice surface (called glaze ice). This
process creates a three-phase problem (Naterer, 2002a)

with a moving solid/liquid interface between the ice and

the glaze film, and another moving liquid/air interface

between the glaze film and the external air flow with

droplets. Unlike glaze ice, the formation of rime ice only

involves mass conservation since droplets are assumed

to solidify immediately upon impact on the ice surface.

In this article, heat transfer processes are examined for

glaze ice, particularly the simultaneous coupling of solid

and liquid growth rates when surface heat input (called
Joule heating) is applied.

Examples of engineering problems involving glaze ice

are icing of aircraft, power transmission lines, telecom-

munication towers and other structures. In the case of

power lines, predictive models can be used as design

tools in maintaining a reliable power supply during

harsh weather conditions, such as freezing rain storms.

Another example is helicopter icing, which can block the
intake air and adversely affect cooling of the engine. The

burning fuel within an aircraft engine produces intense

heat, which is partly expelled through the exhaust of the

engine. Since the remaining heat must be removed to

prevent overheating, helicopter engines are air cooled by

outside air. Under icing conditions, this outside air with

supercooled droplets is forced into the engine com-

partment through openings on its front side or a sepa-
rate intake cooling bay. These surfaces are often heated

for ice prevention. The intake air is routed by baffles

over various engine components to absorb/remove the
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engine heat. This cooling air inflow encounters consid-

erable drag forces (called cooling drag), particularly

with iced surfaces. Reducing the cooling drag can lower

the energy costs by improving the overall fuel efficiency.

Also, operating the engine of the aircraft at higher than

its design temperature can cause excessive oil and fuel

consumption, loss of power, engine damage (i.e. warp-

ing of valves, pistons, rings) and possibly detonation. As
a result, ice formation and blockage at any stage of these

cooling flow processes should be reduced or eliminated.

In this helicopter example, fully understanding the

physical processes leading to glaze ice, particularly when

surface heating is applied beneath the ice layer, is a key

aspect of preventing the aircraft ice problems.

A thermodynamic analysis by Messinger (1953)

identified the primary heat flows which contribute to a
glaze ice formation. A comprehensive review of mathe-

matical models of both rime ice and glaze ice is given by

Poots (1996). Under certain atmospheric conditions (i.e.

ambient temperatures below about )5 �C with unheated

surfaces; Poots, 1996), rime ice accretion can be accu-

rately predicted by Goodwin et al.’s model (1982). Both

heat and mass balances must be considered during the

transition from rime ice to glaze ice (Myers and Ham-
mond, 1999), while consideration of entropy can further

enhance the efficiency and accuracy of the phase change

computations (Naterer, 2001). Tracking of the unknown

positions of the solid/liquid and liquid/air interfaces is a

key difficulty in the analysis of icing problems. These

moving boundary problems involve heat conduction in

the unfrozen water and ice layers, as well as non-linear

energy balances at the phase interfaces.
The incoming droplets contribute significantly to the

interfacial energy balances. The processes of droplet

impact and deposition have been examined by Aziz and

Chandra (2000) in applications involving spray coating

and materials processing. Lee and Bragg (1999) present

an experimental study involving large incoming droplets

on iced aircraft surfaces. Al-Khalil et al. (1993) adopt a

specified distribution of droplet impingement rate for

aircraft icing predictions. Further experimental data

involving freezing rain (droplet diameters of about 1

mm) and icing of power transmission lines has been
presented by Lu et al. (1998). This data was used to

confirm the accuracy of Goodwin’s model over a

range of atmospheric conditions. An extension of Good-

win’s model to glaze ice predictions was presented by

Naterer et al. (1999). The dynamics of incoming droplets

at the ice/air (rime) or unfrozen water/air (glaze) inter-

faces is largely responsible for the final shape and mass

of ice.
Spatially averaged equations can be used to predict

the external multiphase flow with droplets (i.e. Banerjee

and Chan, 1980). Since analytical solutions of mul-

tiphase flows are generally limited to 1-D domains,

detailed modelling often requires a numerical discreti-

zation. A finite element model of multiphase flow with

droplets and icing was presented by Naterer (2002b).

Morphogenetic modelling of power line icing was pre-
sented by Szilder et al. (2001). Icing of power lines can

produce undesirable galloping caused by combined ice

and wind loads (Desai et al., 1996). Numerical analysis

of solid/liquid phase change in these ice problems re-

quires modelling of the interfacial heat balance, and

potentially entropy for accelerated solution convergence

(Naterer, 2000).

Despite these advances, it is not well understood how
the coupled growth of solid and unfrozen water layers

occurs in the presence of surface heating beneath the

solidified layer. This surface heat input (called Joule

Nomenclature

b unfrozen water thickness

B ice thickness

ca, cw specific heats

E collection efficiency (E ¼ 1)

g1, g2, g3 metric coefficients

G liquid water content

h convection coefficient

k thermal conductivity
L latent heat of fusion

N view factor

q heat flux (per unit area)

Q heat input (per unit length)

r local recovery factor

R cable radius, or resistance

t time

u1, u2, u3 curvilinear coordinates

V air velocity (magnitude)

Greeks

v reduction factor

q density

Subscripts

a ambient (air)

conv convection

d droplet

f freezing point

i ice

k kinetic energy
l latent heat

s surface

w water, transition to glaze ice
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heating) affects the energy balance at the solid/liquid

interface. Also, it reduces the temperature difference

between the conductor/ice interface and the ice/water

interface, thereby reducing the relative significance of
heat conduction through the ice. In this article, predic-

tive models based on previous studies by Messinger

(1953), Myers and Hammond (1999), Myers (2001,

2002), and Poots (1996) are developed for icing pro-

cesses over a range of surface heating rates. This Joule

heating represents a boundary condition at the con-

ductor/ice interface with practical importance in thermal

de-icing technology.
This article differs from previous work (i.e., Myers

and Hammond, 1999; Poots, 1996) in certain ways. A

modified treatment of the droplet kinetic energy

(boundary condition) is presented for extensions to large

droplets with relatively low incoming velocities (icing of

power lines). A surface view factor is documented for

droplet capturing on curved surfaces. Also, corrections

for surface curvature are described through a method of
flux tubes. Furthermore, a reduction factor is developed

for problems involving Joule heating. These predictive

models are validated through comparisons with experi-

mental data involving ice buildup on circular, non-

rotating, heated conductors.

2. Problem formulation

The current problem involves three-phase conditions,

including multiphase flow with droplets, phase change

and heat conduction in the ice and unfrozen water

layers (Naterer, 2002a). Based on previous studies,

i.e. Messinger (1953); Myers and Hammond (1999);

Naterer et al. (1999), the following heat flux terms (per

unit area; designated by q) contribute to the energy
balances.

• qk ¼ ðEVGÞV 2=2; kinetic energy of impinging droplets

• ql ¼ qLðoB=otÞ; release of latent heat of fusion
• qa ¼ rhV 2=2cp; viscous heating (coefficients adopted

as by Myers and Hammond, 1999)

• qf ¼ �kðoT=oyÞ; rate of heat conduction through the

ice or unfrozen water layer

• qd ¼ EVGcwðTw � TaÞ; cooling by impingement of in-

coming supercooled droplets

• qconv ¼ hðT � TaÞ; convective heat loss (based on

Nusselt correlation; Makkonen, 1984)

The meaning of individual variables is outlined in the

nomenclature and illustrated in Fig. 1(a) and (b). The
following assumptions will be adopted in the upcoming

analysis: (i) negligible effects of sublimation, turbulence,

radiation, splashback of droplets and gravity-driven

downflow of unfrozen water, (ii) temperature of the

impinging droplets equals the ambient air temperature

and (iii) constant thermophysical properties and con-

vection coefficient.

Initially, rime (dry) ice accumulates on the surface in

accordance with the following mass balance,

qi

oB
ot

¼ EVGN ð1Þ

where N ¼
R
dxp=

R
dx represents a view factor for the

projection of the curved surface in the direction of

the droplet influx. The notations dxp and dx refer to the

projected and actual distances along the curved surface.

For a planar surface, N ¼ 1, but for other curved sur-

faces such as a circular conductor, the view factor is
essential since the projected width of a circular con-

ductor is twice the radius (not the entire circumference).

Thus, N ¼ 1=p for a circular conductor. Then, solving

Eq. (1), subject to B ¼ 0 initially,

B ¼ EVGN
qi

� �
t ð2Þ

Although some previous studies group together the E

and N factors into a single collection efficiency, it should

be noted that these variables are independent. The col-

lection efficiency, E, is defined as the ratio of impinging

droplet mass flux, on the upstream side of the surface, to

the mass influx that would occur on the surface if the

droplets were not deflected by the air stream. On the
other hand, N is a purely geometrical factor which ac-

counts for the inability of incoming droplets to directly

reach an obstructed side of the surface (i.e. back of the

cylinder).

Fig. 1. Schematic of (a) rime ice (t < tw) and (b) glaze ice (tP tw).
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During the period of rime ice growth, latent heat

from the incoming solidified droplets (in conjunction

with other heat modes) is released at the phase interface.

Over time, this heat transfer may raise the ice surface
temperature sufficiently to sustain an unfrozen water

layer with liquid runback along the ice surface. At the

point of transition to glaze ice, Eq. (2) yields the fol-

lowing ice thickness:

Bw ¼ EVGN
qi

� �
tw ð3Þ

where the subscript w denotes the onset to an unfrozen

water film. Beyond this point, ice and unfrozen water

typically co-exist and accumulate simultaneously over

time.

In this section, two types of thermal boundary

conditions (specified temperature; specified heat flux)

are considered. The theoretical model for the first type
of boundary condition (specified temperature) follows

from Myers and Hammond (1999), and Poots (1996),

except for certain changes required for applications to

icing of ground-based structures such as power lines.

This flow regime involves larger droplets and much

smaller air velocities than conditions typically encoun-

tered during in-flight icing of aircraft. As a result, the

treatment of droplet kinetic energy is different. Also, the
second type of boundary condition (specified heat flux)

involves modifying the formulation after using a new

reduction factor. Furthermore, corrections for surface

curvature and appropriate initial conditions are con-

sidered. An upcoming Section 4 will show that a useful

contribution of this article becomes the experimental

validation of these theoretical models.

2.1. Boundary condition: specified surface temperature

The time taken for an incremental growth in ice

thickness is expected to be much smaller than the time

taken for heat to be fully conducted through this newly

formed layer. It is approximated that the layer grows

sufficiently slowly that heat losses/gains at the phase

interface are fully conducted throughout the solid. Then,
heat conduction within the ice, as well as unfrozen water

layers, is approximated to be quasi-steady (note: bounds

described by Myers and Hammond, 1999). Laplace’s

equation is adopted, while the moving phase interface

imposes a time varying boundary condition. The gov-

erning heat equation in the ice becomes

o2Ti
oy2

¼ 0 ð4Þ

subject to a boundary condition of Ti ¼ Ts at y ¼ 0 and

an interfacial condition of Ti ¼ Tf (phase change tem-

perature) at y ¼ B. Solving Eq. (4) subject to the

boundary conditions,

TiðyÞ ¼
Tf � Ts

B

� �
y þ Ts ð5Þ

This represents a quasi-steady result since the ice

thickness, B, varies with time.

In an analogous manner for the unfrozen water layer,

o2Tw
oy2

¼ 0 ð6Þ

subject to T ðBÞ ¼ Tf at y ¼ B. An energy balance at the

liquid/air interface (y ¼ Bþ b) yields the following in-

terfacial constraint,

kw
dTw
dy

����
Bþb

þ rhV 2

2ca
¼ h Twjy¼Bþb

�
� Ta

�
þ EVGcwðTf � TaÞ

ð7Þ
where the terms represent conduction through the un-

frozen water layer (first term), viscous heating (second

term; typically negligible at lower air speeds) and cool-

ing by convection (third term) and the incoming super-

cooled droplets (fourth term). Evaporative cooling is

neglected for these problems involving relatively low air
velocities during icing of ground-based structures (i.e.,

power lines; as compared with aircraft icing).

The expression for heat conduction in Eq. (7) de-

pends on the slope of the temperature profile in the

unfrozen water layer. There exists a lack of relevant

experimental data due to the difficulty of obtaining non-

intrusive, reliable temperature measurements over such

a small distance within the glaze film. As a result, it is
often considered that the equilibrium freezing tempera-

ture (Tf ¼ 0 �C) can be adopted within the glaze film

(i.e., Messinger, 1953). This difficulty is particularly ev-

ident in the current studies involving large droplets (up

to 1 mm diameter) in relation to the thickness of the

unfrozen water layer. However, certain features of the

temperature profile are expected to be encountered from

a physical perspective. A positive slope appears possible
at y ¼ B due to the release of latent heat of solidified

droplets, in contrast to a negative slope, which entails

liquid below the equilibrium freezing temperature (de-

spite available sites for heterogeneous nucleation). On

the other hand, a negative slope at y ¼ Bþ b yields a net

heat outflow from the system, which sustains the growth

of ice. A certain change of temperature slope may arise

within the unfrozen water layer. However, since this
unfrozen water temperature is expected to be very close

to Tf , it will be assumed that a single slope of tempera-

ture can be adopted in the current analysis.

In certain cases, the incoming droplets can essentially

occupy the entire layer of unfrozen water nearly in-

stantaneously upon impact, thereby contacting the ice/

water interface at Tf . In the last term of Eq. (7), a

temperature difference of (Tf � Ta) is used for the large
droplet/low air speed regime (i.e., icing of ground-based

structures such as power lines). However, small droplets
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at high air speeds represent a different flow regime

during aircraft icing (i.e., Myers and Hammond, 1999),

thereby leading to different interactions with droplets in

the unfrozen water layer. These physical assumptions
emphasize the importance of experimental validation (to

be carried out in Sections 3 and 4).

Solving Eq. (6), subject to the boundary conditions,

TwðyÞ ¼ Tf �
C2 � C1ðTf � TaÞ

1þ C1b
yð � BÞ ð8Þ

where bðtÞ is the unfrozen water layer thickness and

C1 ¼
hþ EVGcw

kw
; C2 ¼

rhV 2

2cakw
ð9Þ

A quasi-steady temperature profile is obtained, whereby

the slope of the water temperature profile varies with time

since both BðtÞ and bðtÞ are time dependent in Eq. (8).
The remaining unknowns, BðtÞ and bðtÞ, can be ob-

tained by a simultaneous solution of the interfacial en-

ergy and mass balances. For the energy balance at y ¼ B
(ice/water interface),

qiL
dB
dt

þ kw
oTw
oy

����
B

þ 1

2
EV 3G ¼ ki

oTi
oy

����
B

ð10Þ

Substituting the temperature gradients based on Eqs. (5)

and (8) into Eq. (10), and rearranging,

dB
dt

¼ C3

B
þ C4

1þ C1b
þ C5 ð11Þ

where

C3 ¼
kiðTf � TsÞ

qiL
; C4 ¼

kwðC2 � C1ðTf � TaÞÞ
qiL

;

C5 ¼ �EV 3G
2qiL

ð12Þ

The relative contribution of droplet kinetic energy to
the energy balance depends on the droplet size in rela-

tion to the thickness of the unfrozen water layer. For

small droplets (i.e. diameter of the order of microns;

aircraft icing), the kinetic energy contribution would

likely arise at y ¼ Bþ b (water/air interface) since the

droplet impinges at the top of the unfrozen liquid film.

However, for larger droplets (i.e. diameter of the order

of a millimeter; power line icing), the contribution
would likely appear at y ¼ B (ice/water interface). In

that case, each droplet arrives nearly instantaneously at

the ice surface, while passing through the thin liquid film

without losing appreciable energy at the top of the

water/air interface. Sensitivity studies have shown that

the predicted rate of ice buildup appears to be similar

and nearly independent of whether the kinetic energy of

droplets is imposed at the water/air interface or the ice/
water interface. If the droplets are larger or within the

same order of thickness as the unfrozen liquid layer,

then they can essentially occupy the entire glaze film

nearly instantaneously upon impact. Then, the kinetic

energy is expected to be largely imparted on the ice/

water interface. Although it is beyond the scope of this

article, the droplet kinetic energy is distributed spatially

throughout the layer as each droplet passes through the
layer.

Furthermore, the interfacial mass balance at y ¼ B
requires that

qi

dB
dt

þ qw

db
dt

¼ EVGN ð13Þ

subject to B ¼ Bw at t ¼ tw from Eq. (3) at the onset of

glaze ice. The value of Bw can be obtained by setting
b ! 0 and equating the resulting expression in Eq. (11)

with the rime ice result in Eq. (1), i.e.

Bw ¼ C3

EVGN=qi � C4 � C5

ð14Þ

tw ¼ qi

EVG

� �
Bw ð15Þ

This transition time, tw, was derived based on solving

only a mass balance, Eq. (1), during the period of rime
ice, rather than a combined heat/mass balance. Experi-

mental data is available over a wide range of freezing

rain conditions (Lu et al., 1998). It gives evidence that

rime ice growth can be accurately predicted from a mass

balance alone (i.e. Eq. (1); Goodwin et al., 1982),

without additional convection and viscous heating co-

efficients that introduce further empirical coefficients for

flows over time-varying rime ice shapes.
As a result, the Bw value in Eq. (14) is used as an

initial condition for Eq. (13). Then, the mass balance in

Eq. (13) is integrated and solved in terms of bðtÞ and

BðtÞ, thereby yielding

b ¼ C6t þ C7Bþ C8 ð16Þ
where

C6 ¼
EVGN

qw

; C7 ¼ � qi

qw

; C8 ¼
qi

qw

Bw � EVGN
qw

tw

ð17Þ
The result in Eq. (16) can now be substituted into Eq.

(11) and subsequently solved for BðtÞ. In this way, Eqs.

(11) and (13) are solved for BðtÞ and bðtÞ sequentially.

Since the equations are non-linear, coupled differential

equations, the solution will be obtained numerically (i.e.

Runge–Kutta solver).

2.2. Boundary condition: specified wall heat flux

The second type of boundary condition consists of a

specified heat flux at the wall (conductor/ice interface).

This case arises frequently in practical applications, such

as de-icing of aircraft, power lines and other struc-

tures. It can be examined by considering a heat balance

across the entire liquid film, or alternatively, an inter-
facial energy balance at the solid/liquid interface (see
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Appendix A). Performing an energy balance over the

combined ice and unfrozen water layers,

qw þ ql þ qa þ qk ¼ qconv þ qd ð18Þ

which represents a balance between all energy inflows

(left side) and energy outflows (right side). Heat input

from the wall, qw, to the ice requires that the tempera-
ture within the wall is higher than the temperature of the

wall in contact with the ice. On the other hand, the ice

layer is assumed to stay below Tf to remain in the solid

phase, while the ice/liquid interface is assumed to be at

the equilibrium phase change temperature (i.e. 0 �C for

water). As a result, the temperature gradient is negative

within the wall (with respect to the positive y direction),

and then becomes positive thereafter (in the ice up to the
ice/liquid interface). The practical role of the wall heat

flux is to raise the wall temperature sufficiently to reduce

or prevent the ice buildup on the surface.

Substituting the appropriate heat flux terms into Eq.

(18),

qw þ qiL
oB
ot

þ rhV 2

2ca
þ 1

2
EV 3G

¼ h Twjy¼Bþb

�
� Ta

�
þ EVGcwðTw � TaÞ ð19Þ

Using the temperature profile from Eq. (8), and rear-

ranging in terms of previously defined coefficients from

Eqs. (9) and (12), the following result is obtained:

oB
ot

¼ � qw
qiL

� C1C4b
1þ C1b

þ C5 � C4 ð20Þ

The first term on the right side of Eq. (20) gives the

energy input from the heated boundary. From its lead-

ing minus sign, it can be observed that the ice growth
decreases when the wall heat input, qw, is raised. It

should be noted that Eq. (19) is re-arranged indepen-

dently of Section 2 (i). The same parameters of C1, C4

and C5 appear due to the same heat flows contributing

to the energy balance. Also, the water film temperature

can be used from Eq. (8) in Eq. (19) since heat con-

duction in the unfrozen water layer is subject to the

same boundary conditions in both cases. However, the
wall temperature, Ts, is not known for the constant heat

flux case, so certain modifications will be required for

this case.

The approach used earlier in Case (i) for the time of

transition to glaze ice, Eq. (15), is not adopted for the

case of a specified flux boundary condition. A modifi-

cation of Eq. (15) is required to adapt the temperature

difference in C3 of Eq. (12) to accommodate the specified
flux boundary condition. In particular, this temperature

difference changes due to the continual heat input from

the wall to the adjoining ice layer. On average, the re-

duced temperature difference can be represented by a

reduction factor, v, multiplied by the initial temperature

difference in Eq. (12). This product is calculated to ap-

proximately yield the same heat conduction through

the ice as would be achieved for the actual case with

a specified wall flux.

In practice, the uniform wall flux can be achieved by
resistive type heating with electrical heat generation in-

ternally within the wall (to be called the additional heat

source; Joule heating). This heat input leads to sensible

heating, i.e., a change of surface temperature, Ts, above
some initial/reference value. Consider the following two

cases: (i) change of temperature without the additional

heat source and (ii) change of temperature with the heat

source. An energy balance at the wall/ice interface can
be constructed for each case. These balances include

heat conduction (Qcond) and wall heating (Qw), which

can be expressed in terms of the latent heat release (Ql),

cooling (Qd) and kinetic energy (Qk) of incoming drop-

lets. Dividing the equations for Cases (i) and (ii) yields a

ratio of temperature differences, which approximates the

aforementioned reduction factor, v, i.e.,

v � Tf � Ts;h
Tf � Ts

¼ Qcond

Qcond þ Qw þ Ql þ Qk � Qd

ð21Þ

so that Eq. (12) becomes

C3 ¼
kivðTf � TsÞ

qiL
ð22Þ

In Eq. (21), the subscript h refers to the heated surface

(associated with the specified flux boundary condition).

The latter two terms, Qk and Qd, are usually much

smaller than the other heat flows in typical problems
involving icing of structures (i.e. negative denominator

would not be observed).

Representative values of kðTf � TsÞ (described further

in Section 2.4 involving Ts) and the heat input per unit

depth are used for the conduction and heat source

terms, respectively. These closure relations provide the

correct physical trends for the variations of v. For ex-

ample, as the wall heat input (Qw) increases, then v de-
creases in Eq. (21) so that C3 is lower and the transition

to glaze ice occurs earlier in Eq. (14). Conversely, if Qw

decreases, then v and C3 become larger so that glaze ice

occurs later since less energy is added to the system.

Also, from an energy balance for the constant wall

temperature case, the denominator in Eq. (21) sums to

Qcond, thereby rendering v ! 1 in that case. Then, the

same result for C3 is obtained as earlier in Eq. (12) for
the constant wall temperature case (as expected).

A main difficulty of this fixed wall flux case is the

unique influence of this boundary condition on the na-

ture of the conjugate problem between the wall and the

ice. Consider the positive y-direction beginning at the

wall (y ¼ 0), together with wall heat input, qw. There is a
negative temperature gradient on the wall side; other-

wise, a higher magnitude of qw would lead to more
cooling (not the intention of Joule heating). Also, there

must be a positive temperature gradient (i.e., increasing
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temperature in the increasing y direction) on the ice

side of the wall; otherwise, the temperature would ex-

ceed Tf and cause melting, thereby removing the ice. The

unique difficulty of the Neumann boundary condition
(as compared with the Dirichlet or Robin type; Myers

and Hammond, 1999) is maintaining a constant gradi-

ent in the wall, while allowing the temperature of

the wall/ice interface to change over time. The current

approach based on the reduction factor was found to

be an effective method, while providing reasonable

agreement with experimental data (to be discussed in

Section 4).
In the problem formulation, the understanding

of gravity-driven downflow of unfrozen water in the

x-direction (tangent to the ice surface; see Fig. 1) should

be elucidated. The focus and scope of this article in-

volves the mass of ice buildup, rather than the shape of

ice buildup. The gravity-driven downflow is considered

to have a larger impact on the ice shape. A detailed

investigation of ice shape has been presented elsewhere
(Naterer, 2002b). In the present article, the unfrozen

layer thickness, b, is assumed to be constant in the

x-direction. Its variation in the x-direction due to

gravity-driven downflow, i.e. bðxÞ, was investigated

earlier (Naterer et al., 1999). But its inclusion did not

significantly affect the successfully predicted rates of ice

buildup. When the water thickness, b, is assumed to be

constant, this means that the streamwise gradient of
fluid enthalpy in the unfrozen layer is considered to be

much smaller than thermal gradients normal to the

phase interface (y-direction).

2.3. Corrections for surface curvature

Under certain conditions, heat conduction through

the ice can be appreciably affected by surface curvature.
For general curvilinear coordinates, the mutually or-

thogonal coordinates, u1, u2 and u3, can be related to

cartesian coordinates, x, y and z, using the chain rule of

calculus, i.e.,

dui ¼
oui
ox

dxþ oui
oy

dy þ oui
oz

dz ð23Þ

where i ¼ 1, 2 and 3. Metric coefficients, called g1, g2
and g3, are based on the form of the leading coefficients

in Eq. (23), i.e.

gi ¼
ox
oui

� �2

þ oy
oui

� �2

þ oz
oui

� �2

ð24Þ

Using these definitions, it can be shown that an ele-

ment of arclength, ds, where

ðdsÞ2 ¼ ðdxÞ2 þ ðdyÞ2 þ ðdzÞ2 ð25Þ
can be converted to curvilinear coordinates by

dsi ¼
ffiffiffiffi
gi

p
dui ð26Þ

The result in Eq. (26) shows that the
ffiffiffiffi
gi

p
values are scale

factors involved in the transformation from cartesian to

curvilinear coordinates. Based on Eq. (26),

dA1 ¼ ds2 ds3 ¼
ffiffiffiffiffiffiffiffiffi
g2g3

p
du2 du3 ð27Þ

and similarly for dA2 and dA3, where dA refers to an

area element.

Throughout the previous analysis, surface curvature

was considered in the droplet mass influx (through the
view factor, N), but not the thermal resistance to heat

conduction in the ice. For example, the denominator, B,

in Eq. (11) represents the geometric part of the thermal

resistance for a planar layer. For a curved ice surface, it

does not account for a varying area available to heat

transfer in the direction of the heat flow. The following

analysis provides a flux tube method as a correction of

the thermal resistance to accommodate heat conduction
across a curved layer. A flux tube refers to a region

bounded by heat flow lanes in general curvilinear co-

ordinates.

Considering a flux tube in the u1 direction, the ther-

mal resistance, Rt, of the differential volume element in

that direction is

d3Rt;1 ¼
T � ðT þ dT Þ

Q1

¼ �kðdT=ds1Þds1
�kðdT =ds1ÞdA

¼ ds1
kdA1

ð28Þ

The differentials ds1 and dA1 refer to the normal distance

and cross-sectional area encountered in the path of the
heat conduction. Substituting Eqs. (26) and (27) into

Eq. (28),

d3Rt;1 ¼
ds1
kdA1

¼ 1

k
g1 du1ffiffiffi
g

p
du2 du3

� �
ð29Þ

where
ffiffiffi
g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1g2g3

p
. When all flux tubes are assembled

in parallel, the total thermal resistance to heat conduc-

tion through the ice layer can be obtained. Integrating

Eq. (29),

1

Rt
¼

Z
u2

Z
u3

kdu2 du3R b
a g1=

ffiffiffi
g

p
du1

ð30Þ

where Rt represents the total resistance due to heat

conduction through the curved layer of ice.

These results can now be used as a correction of

thermal resistances for a planar layer. In particular, the

unit resistance (denominator) in Eq. (11), B, can be re-
placed by a unit resistance (area times Rt), given by Rt;u,

inferred from Eq. (30), i.e.,

Rt;u ¼
R
u2

R
u3

ffiffiffiffiffiffiffiffiffi
g2g3

p
du2 du3R

u2

R
u3
du2 du3=ð

R b
a g1=

ffiffiffi
g

p
du1Þ

ð31Þ

The function obtained by Eq. (31), based on the cur-

vature of the surface, can be used as a correction of B.

The numerator in Eq. (31) represents the area, A1,

available to heat flow in the calculation of the unit
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resistance. For example, in a cylindrical geometry, the

curvilinear coordinates adopted in Eq. (31) are u1 ¼ r
(radial), u2 ¼ h (angular) and u3 ¼ z (axial). Then, the

conduction term on the right side of Eq. (11) can be
modified for cylindrical coordinates, i.e.,

C3

B
! C3

R lnððRþ BÞ=RÞ ð32Þ

where R (without a subscript) refers to the radius of the
circular (uniced) conductor. It can be readily verified

that Eq. (31) yields the proper thermal resistances for

common geometries, such as a plane layer or a cylin-

drical annulus.

In the previous analysis, the individual terms in Eq.

(19) represent energy fluxes (per unit area). In consid-

eration of surface curvature, these fluxes are multiplied

by appropriate surface areas to yield the total energy
flows at the inflow and outflow boundaries of the se-

lected control volume. Although the temperature profile

in Eq. (5) does not represent all coordinate systems, its

corresponding heat flux (temperature difference divided

by thermal resistance) can be generalized to those co-

ordinates. This extension, based on the metric coeffi-

cients, can be carried out through the generalized

thermal resistance in Eq. (31). Heat conduction occurs
between the inner and outer edges of the growing ice

layer.

Due to the actual irregular shape (i.e. when not

completely cylindrical), the region cannot be generally

bounded entirely by a single coordinate system. Solving

the planar heat conduction equation, Eq. (4), is viewed

to provide better geometric flexibility when applying the

method to other curved surfaces. For example, a curved
surface can be more effectively analyzed numerically

with piecewise linear solutions, as compared with

piecewise cylindrical solutions in the x-direction (paral-

lel to the surface). Also, even with icing of cylindrical

cables, the shape of the ice buildup is often unsymmet-

rical and not perfectly cylindrical. As a result, the cur-

rent approximate analysis uses a geometric correction to

the planar heat flux, based on Eq. (31), for irregular
geometries, rather than cylindrical coordinates.

2.4. Initial conditions

In addition to the boundary conditions, an initial

condition must be specified before the onset of ice. For

example, based on the following initial energy balance

between internal heat generation (left side) and con-
vective heat losses (right side) prior to the onset of ice

buildup on a circular conductor (per unit length),

_qqðpR2Þ ¼ ð2pRÞhðTs � TaÞ ð33Þ

which can be re-arranged to yield the following initial

condition:

Ts ¼ Ta þ
_qqR
2h

ð34Þ

where _qq is the volumetric heat generation rate within a

circular conductor. This result can be applied as the

initial surface temperature prior to ice buildup if Ts re-
mains at or below Tf ; otherwise, the icing process is

assumed to not be initiated. The heated surface is as-

sumed to melt any incoming droplets whenever its sur-
face temperature exceeds the phase change temperature

(i.e., 0 �C for water).

3. Experimental studies

Experimental data has been used for assessment and

validation of the icing predictions (Lu et al., 1998, 1999).
Reproducing freezing rain in a laboratory setting is a

difficult task, especially since large droplets emitted from

a spray system require a large distance of travel in a

surrounding cold air stream to reach thermal equilib-

rium with the air at a sub-zero temperature. As a result,

performing the experiments in an outdoor setting pro-

vides certain practical benefits of realistically simulating

freezing rain. In the present context, outdoor spray
nozzles were positioned far enough away from various

test specimens to simulate freezing rain essentially nat-

urally. A weight scale and microscope were used to

measure the size spectrum of the water droplets. The

mean volume diameter of droplets was approximately 1

mm, which fairly represents freezing rain in atmospheric

icing of ground-based structures. However, this droplet

size is generally larger than sizes encountered in aircraft
icing applications. For example, typical in-flight icing of

helicopters would occur at )30 �C at 60 m/s with a 0.02

mm typical droplet size.

A fan delivers cold outside air at sub-zero tempera-

tures past a horizontal, circular conductor placed per-

pendicular to the air stream (see Fig. 2). Droplets are

sprayed from the nozzles (located behind the fan) onto

each test specimen. The ejected droplets are pre-cooled
to leave the nozzles at slightly above 0 �C to prevent

freezing in the supply tubes. In order to study the effects

of Joule heating, the inner steel core of the circular test

specimen was replaced by a resistive type heater. The

Fig. 2. Schematic of experimental apparatus.
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amount of heat supplied to the heater rod was adjusted

by altering the input voltage from the DC power source.

A main quantity of interest in this study is the influence

of surface heating on the mass and rate of ice growth.
Plaster cast duplicates were used to determine the

growth of ice by replicating the ice shapes at various

points in time. Two methods were used and compared,

namely (i) tracing out an area (and thus mass) around

the cast sample and (ii) measuring a displaced liquid

volume (and thus mass) caused by the sample when it is

submerged inside a liquid container. Once an area or

volume of ice was obtained, multiplication by the ap-
propriate density yielded the mass of ice. Then, this ice

mass was converted to an equivalent thickness of ice,

based on a uniform radial thickness which yields the

same mass as that actually observed.

Based on these techniques, the ice thickness can be

measured, but not the thickness of the unfrozen water

layer (due to surface runoff). The ice thickness represents

the position of the interface between the ice and the
unfrozen water. It would be difficult to individually

collect the unfrozen water layer when the plaster cast

samples are made, due to uncontrolled mixing of surface

runoff with other incoming droplets (not directly con-

tacting the ice surface). However, the difference between

the measured ice growth and the total droplet influx on

the surface indicates the corresponding mass of unfrozen

water. This total droplet influx represents the maximum
capturing of droplets by the surface (i.e. dry growth

limit).

The air speed produced by the fan was measured by

an anemometer. Also, the horizontal and vertical com-

ponents of precipitation were measured with two pre-

cipitators. It is worthwhile to elaborate on the

experimental difficulties of matching velocity compo-

nents of the air and droplets when studies of large
droplets (mean diameter of about 1 mm) at relatively

low air speeds are considered. Since a large distance of

travel is required for the droplets to reach thermal

equilibrium with the air, ejecting the droplets horizon-

tally into the air stream is impractical for certain rea-

sons. The large droplets would fall under gravity before

reaching the test specimen. Otherwise, they would have

to be ejected into the horizontal air stream with a ve-
locity far greater than the low speeds typically encoun-

tered in ground-based icing problems. As a result, the

droplets were sprayed along a trajectory which was

viewed to give a sufficient distance of travel to reach

thermal equilibrium with the air, while reaching the test

specimen as uniformly as possible.

The sources of experimental errors and uncertainties

were viewed to be mainly caused by the measurement of
the precipitation arriving on the test specimen. The air

velocities, precipitation and air temperature were mon-

itored at half-hour intervals. In view of the previous

discussion regarding a long distance of travel required

for droplets to reach thermal equilibrium, this require-

ment becomes a limitation and uncertainty in terms of

the actual mass of droplets arriving on the specimen.

Comparable experiments were performed over various
time intervals, and the ice mass and precipitation rates

were monitored separately to assess the experimental

uncertainties. It was estimated that the experimental

data reported (Lu et al., 1998, 1999), including ice

thickness and precipitation rate, was accurate within

about 
10%. Specific experiments were performed more

than once to confirm the repeatability of the measured

data. Additional details of the experimental setup are
fully described by Lu et al. (1998, 1999).

4. Results and discussion

Computed and experimental results will be presented

for ice buildup on heated circular conductors. The

practical importance of these studies is its application to
current loading for thermal de-icing of overhead power

transmission lines. During ice buildup, the incoming

droplets are partially solidified, due to runback of un-

frozen water along the growing ice surface. The fol-

lowing three cases of surface heating rate (per unit

length of cable), Q, will be considered in this article. The

liquid water content, G, cable radius, R, and freestream

velocity and temperature, V and Ta, respectively, are
outlined for each case in the following list:

• Case 1: Q ¼ 46 W/m, G ¼ 0:00078 kg/m3, Ta ¼ 267:5
K, V ¼ 5 m/s, R ¼ 1:43 cm

• Case 2: Q ¼ 20 W/m, G ¼ 0:00056 kg/m3, Ta ¼ 270:3
K, V ¼ 6 m/s, R ¼ 1:05 cm

• Case 3: Q ¼ 25 W/m, G ¼ 0:00064 kg/m3, Ta ¼ 268

K, V ¼ 5 m/s, R ¼ 1:43 cm

The results obtained for these three cases are illustrated

in Figs. 3–7. Thermophysical properties of air, ice and

water are given in Appendix B.

Fig. 3. Predicted and measured ice thickness (Case 1).
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The main validated quantities are the mass and rates

of ice buildup on the heated surface with respect to time.

For icing of circular cables, an equivalent ice thickness,

B, is defined as the uniformly radial ice thickness having

the same mass of ice as the actual observed ice accretion.

Previous experimental studies for unheated, non-rotat-

ing conductors indicate that the ratio of equivalent ice

thickness to time should remain nearly constant
(Goodwin’s model; Lu et al., 1998). Goodwin’s model

will be referenced frequently here for comparison pur-

poses, and it will be called the dry growth limit, since it is

based on a conservation of mass alone. The dry growth

limit is reached when all incoming droplets are assumed

to freeze immediately upon impact on the surface (i.e.

not requiring thermal analysis). Goodwin’s model has

been well validated experimentally for rime and glaze ice

(Lu et al., 1998). The reduction factor, v, will be used for
the previously mentioned three cases involving Joule

heating, when finding the transition time to glaze ice. In

particular, the coefficient C3 (based on v) is calculated in

Eq. (22) and later used to find the glaze ice transition

time in Eq. (15). The solution changes from Eq. (2) to Eq.

(20) once the transition to glaze ice occurs.

In the upcoming figures, the predicted ice thickness

will be compared with experimental data (depicted by
boxed data points) and the dry growth limit. Dry growth

can occur in a variety of possible ways. For example, if

the ambient air temperature is sufficiently low, then the

heat released by the impinging supercooled droplets

upon freezing would be insufficient to sustain an un-

frozen water layer along the ice surface. If there is a

close proximity between the computed results and the

dry growth limit, this indicates that relatively low sur-
face heating and/or liquid water content do not add

enough energy to appreciably reduce the accumulation

of ice (as compared with dry growth). It will be shown

that the present analysis approaches the dry growth

limit when the surface heating is diminished sufficiently

(as expected).

The rate of ice growth in Case 1 is shown in Fig. 3

when relatively high Joule heating is applied. Good
agreement is achieved between the predicted and mea-

sured results when surface curvature is considered.

Surface runoff of unfrozen water along the surface leads

to slower ice growth than the dry growth limit. Al-

though this surface runoff is not directly predicted by the

current thermal analysis, it can be inferred from the

difference between the dry growth limit and the com-

bined ice and unfrozen water mass retained on the sur-
face (i.e. predicted by the b plus B variations over time).

In addition to the surface heat input, latent heat is re-

leased at the phase interface by incoming droplets,

Fig. 4. Effects of surface heating rate (Case 1).

Fig. 5. Transient growth of the unfrozen liquid layer (Case 2).

Fig. 6. Predicted and measured ice thickness (Case 3).

Fig. 7. Asymptotic trends of low surface heating (Case 3).
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thereby contributing to the surface runoff of unfrozen

water. In Fig. 3, it can be observed that surface curva-

ture effects are sufficiently important to warrant their

consideration in the thermal analysis. Without consid-
ering the area changes for heat conduction through the

ice (i.e. without curvature; discussed in Section 2.3), the

rate of ice growth is under-predicted due to the extra

heat flux arising from the under-predicted area of the

growing ice boundary.

Transition from rime ice to glaze ice occurs when the

net energy input to the ice surface (including the release

of latent heat of impinging solidified droplets) raises the
surface temperature of the ice sufficiently to sustain an

unfrozen water layer on the surface. In Fig. 3, it can be

observed that the computed results (dashed line) inter-

sect the dry growth limit (solid line) slightly ahead of the

origin of the B–t axes. Before this intersection point, the

ice thickness grows linearly in time along the dry growth

limit during rime ice growth. During this period, drop-

lets are solidified upon impact on the surface without
sufficient energy added to sustain an unfrozen layer.

Transition to glaze ice is predicted at the intersection

point, beyond which the ice growth rate diminishes due

to surface runoff. Although the transition point to glaze

ice was not specifically measured, it may be viewed from

a backward extrapolation from the experimental data to

its intersection with the dry growth limit. The pre-

dicted transition time in Fig. 3 appears consistent with
the trend indicated by the backward extrapolation of

experimental data. Although there is a range of time

(Fig. 3) corresponding to this backward extrapolation,

the predicted transition time establishes the proper

trends afterwards. For example, in Fig. 3, if the transi-

tion time was largely over-predicted, then the entire

dashed curve would be translated upwards, thereby

showing a corresponding disagreement with the experi-
mental data points at later times.

The effects of Joule heating rate are illustrated in Fig.

4. In these sensitivity studies, the indicated parameter is

independently modified and all other remaining pa-

rameters are kept constant (as specified for Case 1). The

results in Fig. 4 for Q ¼ 46 W/m agree well with ex-

perimental data shown earlier in Fig. 3 (measured for

Q ¼ 46 W/m). As expected, the rate of ice growth in-
creases when the surface heating rate is lowered. As

incoming droplets impact on the surface and unfrozen

water flows along the ice surface, a higher net rate of

heat loss from the ice interface leads to more ice accu-

mulation when the wall heating is lowered.

In Case 2, certain parameters are lowered, including

the Joule heating rate (Q), liquid water content (G) and

cable radius (R). In Fig. 5, the predicted growth of the
unfrozen water layer along the ice surface is depicted

over time for Case 2. The results generally indicate that

this glaze film approaches a certain thickness over time.

It has been validated that the decreasing slope of glaze

film growth over time in Fig. 5, particularly at the end

time shown, occurs coincidentally and closely with the

slope of ice growth approaching the dry growth slope.

This is consistent with the mass conservation between
incoming droplets, ice and unfrozen water, since the

lower rate of unfrozen water growth comes at the ex-

pense of higher growth of ice. It appears that a quasi-

steady balance occurs between the heat released from

the advancing ice interface and the heat losses from the

edge of the glaze film. When the change of unfrozen

water thickness with time becomes small, then the in-

coming droplets mainly contribute to an increase of ice
mass. A balance between the mass of incoming droplets

and the growing mass of ice becomes analogous to the

dry growth limit based on Goodwin et al.’s model

(1982). It can be observed that the slopes of rime ice (dry

growth limit) and glaze ice growth nearly match each

other in Fig. 4 at large times.

The unfrozen water layer leads to surface runoff from

the ice surface. In this article, the mass and energy
balances at the solid/liquid interface determine the

proportion of the droplet influx which solidifies on im-

pact on the ice surface. The remaining proportion rep-

resents the non-solidified mass, such as surface runoff of

unfrozen water and droplets. This proportion corre-

sponds to the difference between the dry growth limit

(no surface runoff) and the actual predicted ice growth

curve. Although not directly predicted in the current
results, droplet bounce-back or splash-back can be ac-

commodated in the current formulation if appropriate

experimental correlations for E (collection efficiency) are

available for these processes. When using the collection

efficiency, this parameter includes impinging droplets

that bounce or splash, but are later collected in the

unfrozen water layer, since they stay on the ice surface.

Other sensitivity studies (not shown here) confirm
that the glaze film thickness decreases when the ambient

air temperature is lowered. As expected, this trend in-

dicates that the glaze film thickness would eventually

disappear with sufficiently low ambient temperatures.

Once the supercooled droplet temperature is sufficiently

low (typically below about )5 �C for unheated con-

ductors; Poots, 1996), its release of latent heat upon

impact and solidification is lower than the net heat loss
from the freezing droplet. As a result, the droplet so-

lidifies immediately upon impact, without producing an

unfrozen water layer. In Fig. 5, the unfrozen water thick-

ness decreases when Q is lowered. Due to higher net heat

losses from the ice/water interface, more liquid is solid-

ified. In view of the overall mass balance of incoming

droplets, a smaller glaze film thickness leads to a larger

growth in ice mass (as depicted in Fig. 4 for Case 1).
Case 3 is examined in Figs. 6 and 7. In Fig. 6, the

Joule heating rate is Q ¼ 25 W/m and the liquid water

content is G ¼ 0:00064 kg/m3. Fair agreement is

achieved between the predicted and measured results in
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this case. When considered in view of the range of

experimental uncertainty (discussed in Section 3), rea-

sonable predictions are obtained with or without surface

curvature corrections. It seems that the lower surface
heat input leads to less sensitivity to heat conduction

effects through the surface curvature correction (as

compared to Case 1). There is a closer proximity to the

dry growth limit, when thermal effects are diminished as

a higher proportion of droplets are solidified on impact.

Also, it should be noted that only the rate of ice mass

buildup is shown in Fig. 6, not the shape of ice. The

experimental studies have shown that different ice
shapes may occur during glaze icing of cables, including

top/bottom asymmetry with locally planar behaviour.

An important validation test for any glaze ice analysis

is to check that the ice growth approaches the proper

limit when the wall heating rate diminishes. This limit

occurs when all droplets are solidified immediately upon

impact and a mass balance alone yields Goodwin et al.’s

model (1982). When the Joule heating rate (Q) is lowered
sufficiently, the heat transfer predictions should not ex-

ceed the range of measured data centered about Good-

win’s model (dry growth limit). Fig. 7 shows this correct

trend. When Q is lowered, the predicted results stay

within the range of experimental data (boxed data

points) obtained for unheated conductors (Q ¼ 0). The

experimental data in Fig. 7 represents ice growth on

unheated conductors over a range of droplet impinge-
ment rates, cable sizes and air temperatures and veloci-

ties. In particular, this range encompasses �25 �C <
Ta < �1 �C (ambient air temperature), 0 < V < 10 (m/s)

(wind speed), 0:8 < d < 1:4 (mm) (droplet diameter) and

0:65 < R < 2:2 (cm) (cable radius). Due to this range of

conditions, more than one data point may be shown at

nearly the same time. These data points lie within a close

proximity of Goodwin’s model (solid line).
Some measured data points and predicted results

exceed the dry growth limit. In Goodwin’s model, only

droplets arriving on the surface in the projected distance

into the wind direction are captured by the surface.

However, some droplets can adhere at the sides of the

iced conductor, both from the freestream flow adjacent

to the conductor, as well as droplets deflected around

the conductor from the front side of the conductor. The
main purpose of examining this data is to verify that the

predictive model exhibits the correct limiting behaviour

as Q ! 0. The predicted results show that the limiting

cases stay within the upper bound of experimental data

for unheated conductors. The current model successfully

captures a range of ice conditions including rime ice (dry

growth limit; low surface heating rates), transition and

combined rime/glaze ice conditions.
Although this study, as well as similar previous

studies, have attempted to derive analytical models for

ice buildup on curved surfaces, the sensitivity and de-

pendence of all of these models on various empirical

coefficients should not be overlooked. Some examples of

empirical coefficients include the convection coefficient

(typically accurate within 
25%) and the collection ef-

ficiency. Despite these limitations, the goal of these
studies is viewed more in terms of the capabilities of

predicting the correct physical trends with reasonable

accuracy. For instance, the relative influences of surface

heating rate and conductor size have been described in

this article. As a result, deeper physical insight has been

gathered to attempt to reduce the empirical nature of ice

protection systems.

5. Conclusions

In this article, a time dependent model is developed to

predict the simultaneous growth of ice and unfrozen

water on heated curved surfaces. The predictive model
includes heat conduction (through the ice and unfrozen

water layers), convection and incoming droplets, which

absorb sensible heat from the ice surface, release latent

heat and impart kinetic energy upon impact. Transition

occurs from rime ice to glaze ice with surface runoff due

to unfrozen water along the ice surface. The heat con-

duction equations in the ice and the unfrozen water layer

are solved simultaneously with the mass balance of in-
coming droplets and ice accumulation. The predictive

model is applied to ice buildup on an electrically heated

cable. Reasonable agreement is achieved between pre-

dicted results and experimental data. Furthermore, the

heat transfer model is shown to correctly approach the

dry growth limit when the surface heating is lowered

sufficiently. In this way, a new unified model is presented

over the range of conditions including rime ice, transition
and combined rime/glaze ice growth with Joule heating.
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Appendix A. Boundary condition: constant wall heat flux

The governing equations involve conduction in the

ice, i.e.

o2Ti
oy2

¼ 0 ðA:1Þ
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subject to Ti ¼ Tf at y ¼ B (ice/liquid interface) and

dT=dy ¼ qw=k at y ¼ 0. Solving Eq. (A.1) subject to the

boundary conditions,

TiðyÞ ¼ Tf þ
qw
k

Bð � yÞ ðA:2Þ

The governing, boundary and interfacial conditions in

the unfrozen water layer remain the same as derived
earlier, i.e. Eq. (10), except the evaluation of conduction

in the ice. Based on Eq. (A.2),

dB
dt

¼ eCC3 þ
C4

1þ C1b
þ C5 ðA:3Þ

where

eCC3 ¼ � qw
qiL

ðA:4Þ

Also, the following coefficient is defined by

C9 ¼ eCC3 þ C5 þ
C6

C7

ðA:5Þ

Other constants remain the same as defined earlier in
Eqs. (9), (12) and (17).

In the present work, the solution of Eq. (A.3) is ob-

tained by a numerical ODE solver (using Maple V).

However, a closed-form solution of Eq. (A.3) can be

obtained. In obtaining this solution, Eq. (16) is substi-

tuted into Eq. (A.3) and a change of variables is per-

formed, i.e.

M ¼ � C4

C6t þ B
ðA:6Þ

The third term in Eq. (A.3) is replaced by this single new

variable.

After changing all variables appropriately, and solv-

ing the simplified differential equation subject to B ¼ Bw

(or M ¼ Mw) at t ¼ tw, we obtain the final result that

B ¼ C6qw

qi

� �
t � 1

C7

C8

�
þ 1

C1

þ C4

C1M

�
ðA:7Þ

where M is defined implicitly as follows:

ln
ðC9 �MÞMw

MðC9 �MwÞ


 �
þ C9

M
� C9

Mw

¼ �C1C7C2
9

C4

ðt � twÞ

ðA:8Þ
Thus, at any instant of time, the value of M is obtained

from Eq. (A.8) and substituted into Eq. (A.7) to find the

ice thickness, B, at that time.

Appendix B. Thermophysical properties

For ice, qi ¼ 917 kg/m3, ci ¼ 2030 J/kgK and ki ¼ 1:8
W/mK. For water, qw ¼ 1000 kg/m3, cw ¼ 4220 J/kgK,

kw ¼ 0:57 W/mK and L ¼ 3:3� 105 J/kg. For air, ca ¼
1014 J/kgK, ka ¼ 0:024 W/mK and ma ¼ 1:3� 10�5 m2/

s. Other remaining parameters and coefficients have

been adopted from previous studies by Myers and

Hammond (1999) and Makkonen (1984).
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